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The configuration of (3-substituted)-1,2,4-triazin-5-ylcarbaldoximes and (3-substituted)alkyl-1,2,4-triazin-5-
ylketoximes was determined by means of 'H-nmr, *C-nmr, **N-nmr and homonuclear NOE-difference spec-
troscopy. Oximes resulting from reaction of 1,2,4-triazines with nitroalkanes were found to be either pure E-
isomers or E/Z-mixtures with the amount of E-isomer greatly predominating. Detailed **C-nmr data of the ox-

imes investigated are presented.

J. Heterocyclic Chem., 30, 413 (1993).

Introduction.

The 1,2,4-triazine system is characterized by its marked
w-deficiency [1,2], reflected by the inability of the triazine
ring to undergo electrophilic substitution and its signifi-
cant vulnerability towards nucleophilic attack. Thus, many
important methods useful for the preparation of function-
alized 1,2,4-triazine derivatives involve nucleophilic sub-
stitution of hydrogen [3-6] or of a nucleofugal group [1] in
3-, 5- or 6-position of the heteroaromatic ring. A few years
ago, we developed a versatile and also simple route to pre-
viously unknown oximes of 5-formyl and 5-acyl-1,2,4-tri-
azines consisting of the reaction of 1,2,4-triazines with
nitronate anions [7]. The reaction proceeds in a regiospe-
cific manner via formation of the anionic o-adducts which
then undergo conversion into the corresponding oximes in
good yields [8]. Compounds of the latter type have been
shown to be of considerable synthetic utility [9]. As oximes

Table 1. Compounds Investigated

No. R v/

1 H H

2 H CH,

3 H OH

4 H OCH;

5 H SCH, N

6 H SCH(CH,), = \IN
7 H C¢Hs

9 CH, H i \N)\Z
10 CH, OCH,

11 CH, SCH, N

12 CH, SCH(CH3), OH

13 CH, CeHs

14 CH,CH, SCH,

15 CH,CH,CH, SCH(CH,),

16 CH,CH,CH,CH, SCH,

17 CH,CH,CH,CH, CeHs

are of particular interest as enzyme substrates - stereose-
lective reduction gives either R or S secondary amines
depending on E- or Z-configuration of the educt - we be-
came interested in the stereoselective synthesis of chiral
alcohols and amines by enzymatic reduction (baker’s
yeast) of oximes containing the 1,2,4-triazine moiety [10].
In order to use substrates of defined stereochemistry in
these studies, the configuration of our oximes had to be
unequivocally determined. Here we report on configura-
tional assignments with aldoximes 1-7 and ketoximes 9-17
(given in Table 1) by means of 'H- and “*C-nmr spec-
troscopy including 'H{'H}-NOE-difference experiments.

Results and Discussion.
Aldoximes 1-7.

For configurational assignments with aldoximes and
ketoximes numerous nmr-spectroscopic techniques have
been used, a survey is given in ref [11]. Moreover, a new
method for the determination of the stereschemistry of
aldoximes has been recently reported [12]. Assignments
with aldoximes are known to be simple in cases when both
isomers are at hand, as the resonance of the N=CH pro-
ton in the Z-isomer is markedly shifted upfield compared
to that of the corresponding E-isomer [13]. The 'H-nmr
spectrum of oxime 1 (*H-nmr data of all compounds inves-
tigated are given in Table 2) showed two sets of signals in
a ratio 100:7, the main component having the N=CH sig-
nal at higher frequencies (6 8.13 ppm) compared to the
minor isomer (dy_cy 7.65 ppm), indicating the pre-
dominating species to be the E-configured oxime [14].
This assignment could be shown by NOE-difference ex-
periments according to lit [11]: irradiation of the NOH
transition in E-1 gave the corresponding N=CH singlet a



414

A. Rykowski, E. Guzik, M. Makosza and W. Holzer Vol. 30

Table 2

1H-NMR Data (3, ppm, in Deuteriodimethyl Sulfoxide) of Compounds Investigated

No. OH H-6 Protons of R Protons of Z

E-1 12.86 9.67 8.13 9.73,5J(H-3, H-6)= 2.2 Hz

VA | {a] 10.12 7.65 9.93, SJ(H-3, H-6) = 2.0 Hz

E-2 12.77 9.49 8.08 2.75

Z-2 [a] 9.96 7.59 [a]

E-3 13.08 8.24 7.89 13.08

E4 12.83 9.33 8.05 4.07

zZ-4 [a] 9.81 7.56 [a]

ES5 12.86 9.33 8.04 2.61

Z-5 [a] 9.80 7.56 [a]

E-6 12.83 9.31 8.02 3.98 (SCH), 1.40 (CH3)

Z-6 [a] 9.78 7.55 [a]

E-7 12.86 9.58 8.20 8.50-8.37 (Ph H-2,6), 7.73-7.51 (Ph H-3,4,5)
z-7 [a] 10.03 1.72 [a]

ES8 [b.e] 9.68 8.77 8.52-8.37 (Ph H-2,6), 7.71-7.54 (Ph H-3.4,5)
E9 12.65 9.71 2.17 9.711

E10 12.65 9.39 2.14 4.05

E-11 12.67 9.37 2.12 2.61

E-12 12.67 9.35 2.12 3.98 (SCH), 1.41 (CHj)

E-13 12.63 9.61 2.28 8.53-8.41 (Ph H-2,6), 7.68.7.52 (Ph H-3,4,5)
E-14 12.64 9.36 2.72 (CHy), 1.03 (CH3) 2.61

Z-14 [a] 9.46 [a] (CHy), 1.06 (CHy) [a]

E-15 12.60 9.35 2.72 (=C-CH3y), 1.50 (CH,), 0.88 (CH3) 3.94 (SCH), 1.41 (CH3)

E-16 12.50 9.36 2.74 (=C-CH3), 1.70-1.16 (CH,-CHy), 0.86 (CHy) 2.61

E17 12.59 9.61 2.91 (=C-CHy), 1.70-1.22 (CH,-CHj,), 0.90 (CHj) 8.51-8.39 (Ph H-2,6), 7.65-7.53 (Ph H-3,4,5)

[a] Overlap with signals of the predominant E-isomer. [b] E-8 = (E)-O-Acetyl-3-phenyl-1,2,4-triazin-5-yl aldoxime. [¢] § COCH3: 2.30 ppm.

marked NOE, whereas the triazine H-6 signal was only
slightly affected. In contrast perturbation of the N=CH
line led to an enhancement of the OH-signal. These find-
ings are a clear proof for the spatial closeness between OH
and N=CH in the main component of 1 and thus for the
E-configuration of this species.

Aldoximes 2, 4, 5, and 7 turned out to be nearly pure
E-isomers, however, a second set of signals in the aromatic
region of the "H-nmr spectrum can be taken as a hint that
they are accompanied by small amounts (7: 4%, 2, 4, 3:
below 1%) of the corresponding Z-isomer. Whereas the
resonances of the N=CH protons in the Z-configured
compounds were shifted 0.47-0.51 ppm upfield compared
to those of the corresponding E-isomers, for the triazine
H-6 protons 0.45-0.48 ppm downfield shifts were observed.
The E-configuration of the pure isomers 3 and 6 can be
deduced on the basis of the following arguments: The
chemical shift of the N=CH proton in compound 6 (6 8.02
ppm) is in the same range with the N=CH resonances of
the closely related E-isomers 2, 4, 5, and 7 (6 8.02-8.20
ppm); the small upfield shift of the N=CH proton in ox-
ime 3 (compared to E-configured oximes E-1, E-2, E-4
- E-7) can be atiributed to the electron-donating effect of

the hydroxy function in 3-position of the triazine ring.
Moreover, the E-configuration of compounds 3 and 6 as

well as that of the main components of oximes 2, 4, 5, and
7 was independently determined by NOE-difference
experiments as described above for compound E-1.
Another hint for the E-configuration of these com-
pounds is the similar magnitude of the 'J(**C, 'H) coupling
constants of the iminyl (N=CH) fragments (] =
172.8-174.1 Hz, for all **C-nmr data see Table 3). Such
type of coupling constants are known to be strongly de-
pendent on the position of the non-bonding electron pair
of the N-atom relative to the iminyl-H (cis-position of lone-
pair and iminyl-H leads to a 10-15 Hz larger coupling con-
stant than the trans-position) [15,16]. Thus, for instance,
the minor component of 7 (Z-7) exhibits a 'J(N=CH)
coupling constant of 184.6 Hz conclusively indicating Z-
configuration, whereas E-configuration has to assigned to

the main isomer E-7 with a 'J(N=CH) value of 173.1 Hz.

Additionally, the E-configuration of E-7 independently fol-
lows from the coupled *N-nmr spectrum (INEPT): among
the four '*N-signals detected only one (6 36.8 ppm), which
can be unambiguously attributed to the triazine N-1 atom
on basis of chemical shift considerations [1,17], is split by
a larger coupling (}J(N-1,H-6) = (—)11.9 Hz, sign not de-
termined), all other resonances (6 24.2 ppm, J = 3.7 Hz,
oxime-N; —18.9 ppm, J = 3.3 Hz, triazine N-2; —98.6
ppm, J = 1.8 Hz, triazine N-4) show couplings smaller
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Table 3
13C.NMR Data of Compounds Investigated (in Deuteriodimethyl Sulfoxide)

13C-Chemical Shifts (8, ppm) 13C,1H-Coupling Constants (Hz)

Triazine-C

C-3 Cc-5 C-6 C=N R z

E-1 157.4 151.4 146.4 146.1 = = 173.2 (Mn=c.n)» [a]
E2 166.4 151.4 143.6 146.2 = 23.2 172.8 (Mn=c.1)> [a]
E3 161.5 153.8 129.8 146.8 = - 174.1 (Un=c.n): [a]
E4 165.2 154.1 141.1 146.0 = 55.5 173.2 (Mn=c-n)- [b]
ES 172.5 151.1 141.8 145.9 = 13.2 173.6 MIn=c.n)- [¢]
E-6 172.3 151.3 141.8 145.9 = 35.4 (SCH), 22.5 (CH3) 173.6 (Mn=c.p)> [d]
E7 162.5 151.8 144.2 146.4 = 134.4 (C-1), 131.9 (C-4), 173.1 (MUn=c.n) [e]

129.1(C-3,5), 127.8 (C-2,6)
z-7 [a] (a] 147.9 142.9 - [a] 184.6 (Un=c.1)
E9® 157.0 153.3 146.1 152.3 8.9 = [f]
E-10 165.0 155.9 140.8 152.5 8.9 55.3 [a]
E-11 172.2 152.7 141.5 152.1 8.3 13.2 [e]
E-12 172.1 152.9 141.4 152.1 8.8 35.4 (SCH), 22.4 (CH3) [b]
E-13 162.1 153.4 143.9 152.6 9.0 134.5 (C-1), 131.8 (C-4), [i]

129.0 (C-3,5), 127.7 (C-2,6)
E-14 172.3 152.2 141.7 156.4 16.2 (CHy), 10.1 (CH3) 13.2 Iil
Z-14 173.1 150.2 146.0 151.7 25.0 (CHy), 11.1 (CHg) 13.2 [k]
E-15 172.1 152.6 141.5 155.2 24.6 (Co), 18.7 (Cp), 14.0 (CHy) 35.4 (SCH), 22.4 (CH3) [a]
E-16 172.2 152.5 141.6 155.4 27.4(Cp), 22.2 (C4 Cy), 13.1 (4

13.5 (CH3)
E-17 162.0 153.1 144.0 155.8 27.5 (Cp), 22.4 (Cq), 22.3 (Cy), 134.6 (C-1), 131.7 (C-4), [a]
13.6 (CH3) 129.0 (C-3,5), 127.6 (C-2,6)

[a] Not determined. [b] 3J(C-3, OCH3): 3.7 Hz; 4J(C-3,H-6): 1.1 Hz; 2J(C-5, H-6): 8.8 Hz; 2J(C-5, N=CH): 6.1 Hz; 1J(C-6, H-6): 192.3 Hz; 3J(C-s,

~CH): 3.8 Hz; 1J(OCH3): 147.8 Hz. [¢] 3](C-3,SCHj): 4.2 Hz; 4J(C-3, H-6): 1.2 Hz; 2J(C-5, H-6): 8.1 Hz; 2J(C-5, N=CH): 6.2 Hz; 1J(C-6, H-6):
192.4 Hz; 3J(C-6, N=CH): 3.8 Hz; 1J(SCHj): 142.2 Hz. [d] 2J(C-5, H-6): 8.2 Hz; 2J(C-5, N=CH): 6.2 Hz; 1J(C-6, H-6): 192.2 Hz;3J(C-6, N=CH):
3.8 Hz; 1J(SCH): 145.8 Hz; 2J(SCH, CHg): 4.3 Hz; 1J(CH3): 127.5 Haz. [¢] 3J(C-3, Ph-H-2,6): 3.7 Hz; 2J(C-5, H-6): 7.8 Hz; 2J(C-5, N=CH): 6.2 Hz;
1J(C-6, H-6): 191.8 Haz; 3J(C-6, N=CH): 3.8 Hz. [{] 1J(C-3, H-3): 207.8 Hz; 2J(C-5, H-6): 7.2 Hz; 3J(C-5, CH3): 3.0 Hz; 1J(C-6, H-6): 191.1 Hz;
4J(C-6, H-3): 2.0 Hz; 1 J(CH3): 130.1 Hz. [g] 2J(C-5, H-6): 7.8 Hz; 3J(C-5, CH3): 3.0 Hz; 1J(C-6, H-6): 192.7 Hz; 2J(C=N, CHz): 6.6 Hz; 1J(SCH3):
142.2 Hz; 1J(CCH3): 130.1 Hz. [h] 2J(C-5, H-6): 7.6 Hz; 3J(C-5, CH;): 2.9 Hz; 1J(C-6, H-6): 192.7 Hz; 2J(C=N, CHy): 6.9 Hz; 1J(SCH): 145.5 Hz;
1J(SC-CH3): 127.6 Hz; 1J(N=C-CHjz): 130.1 Hz. [i] 3](C-3, Ph-H-2,6): 3.6 Hz; 2J(C-5, H-6): 7.5 Hz; 3J(C-5, CH3): 3.0 Hz; 1J(C-6, H-6): 192.0 Hz;
2J(C=N, CHj): 6.8 Hz; 1J(CHy): 130.0 Haz. [j]3J(C-3, CHj): 4.4 Hz; SJ(C-3, H-6): 1.3 Hz; 2J(C-5, H-6): 7.7 Hz; 3J(C-5, CHy): 3.6 Hz; 1J(C-6, H-6):
192.6 Hz; 2J(C=N, CHy): 4.8 Hz; 1J(SCH3): 142.1 Hz; 1J(CHy): 130.8 Hz; 2J(CH,,CHg3): 4.2 Hz; 1J(CH3): 128.0 Hz; 2J(CH;, CHy): 5.4 Hz. [k]
3J(C-3, CHj): 4.3 Hz; 5J(C-3, H-6): 1.3 Hz; 1J(C-6, H-6): 195.4 Haz; 1J(CHy): 127.1 Hz. [1]3](C-3, SCH;): 4.4 Hz; 5J(C-3, H-6): 1.3 Hz; 2J(C-5, H-
6): 7.8 Hz; 3J(C-5, CH,): 3.6 Hz; 1J(C-6, H-6): 192.6 Hz; 1J(SCH3): 142.1 Hz.

than 3.7 Hz. For aldoximes it is well known, that cis-posi-
tion of the oxime-nitrogen’s lone-pair and the iminyl-pro-
ton (Z-configuration) gives rise to a large, negative 2J(**N,
'H) coupling constant (~ — 15 Hz), whereas the trans-po-
sition (E-configuration) leads to a small, positive value ( ~
3 Hz)[16,18,19]. Thus, the small geminal **N, 'H-coupling
constant in the iminyl-substructure of structure 7 (6 24.2
ppm, J = 3.7 Hz) unequivocally calls for E-configuration.
Analogously, E-configuration of O-acetyloxime 8, which
was obtained from reaction of 7 with acetic anhydride,

could be deduced on the basis of its coupled **N-nmr spec-
trum (see Experimental). Chemical shift considerations
(6n=cu 8.77 ppm) and NOE-difference experiments (NOE
on N=CH upon irradiation of the methyl-H resonance)
confirm the above assignment for compound 8.

Ketoximes 9-17.
A well established and widely used method for the dis-

crimination between isomeric ketoximes is based on the
y-effect: carbon atoms being in the y-position (a to C=N)
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to a syn located oxime-oxygen suffer an upfield shift com-
pared to the y-atoms in aenti-position due to steric com-
pression [20,21]. However, assignments according to this
method can be problematic in cases when only one iso-
meric form is at hand, as it is based on comparison of *C-
chemical shifts between E- and Z-isomers. Although some
ketoximes investigated were found to be obviously mix-
tures of stereoisomers, except for structure 14 the amount
of the second isomer was too small (below 1%) to apply
this method. However, oximation of ethyl 3-methylthio-1,2,
4-triazin-5-yl ketone with hydroxylamine hydrochloride in
acidic medium led to a 4:1 mixture of isomeric oximes,
which now could be differentiated on the basis of their
13C-chemical shifts. It turned out that the main component
had the E-configuration (E-14, §CH,) 16.2 ppm, & (triazine
C-5) 152.2 ppm, see Table 3), whereas Z-14 (6 (CH,) 25.1
ppm, & (iriazine C-5) 150.2 ppm) was the minor compo-
nent. Peforming the above mentioned oximation reaction
in alkaline medium gave only a single isomer identical
with E-14, which was also obtained as a single isomer upon
reaction of 3-methylthio-1,2,4-triazine with the ethyl ni-
tronate anion according to ref [7}.

Oximes derived from methyl 1,2,4-triazin-5-yl ketones
(compounds 9-13) turned out to consist practically of one
isomeric form [22]. In such cases, NOE-difference spec-
troscopy was proven to be a valuable method for configu-
rational assignments on the condition that the molecule
bears protons suitable as probes for the detection of dis-
tinct through-space connectivities [11,23]. Thus, for in-
stance, irradiation of the methyl transition in oxime 9 gave
large NOEs to the OH proton as well as the triazole H-6
(Figure 2), the former interaction being evidence for
spatial closeness of the OH and the methyl groups and

\a
|
Mo A son,
N
HO” 5
a

2 L LY

r T ] T T
12 19
PPM

D —1

Figure 1. a) 'H-nmr spectrum of 5 (deuteriodimethyl sulfoxide, 6.0-14.0
ppm), b) NOE-difference spectrum of 5 resulting from irradiation of
the iminyl-H resonance.

Vol. 30

thus for the E-configuration. In contrast, irradiation of the
OH-line enhanced the methyl signal.

\ 6 /N\N
HSCY[\ )
N
N
HO” 9

OH 6

PPM

Figure 2. a) ‘H-nmr spectrum of 9 (deuteriodimethyl sulfoxide),
b) NOE-difference spectrum of 9 resulting from irradiation of the meth-
yl transition.

Analogously, NOE-difference experiments enabled us to
assign the E-configuration also to structures 10-13. This
could be further confirmed considering the chemical shifts
of the methyl-C atoms in compounds 9-13 (5 8.8-9.0 ppm,
Table 3), which closely resemble those obtained for other
oximes of similar type having the methyl group and the
OH-group in the syn-position [24].

Compounds 15-17, characterized by longer acyl
moieties, also were present in one isomeric form [22]. Com-
parison of the '*C-chemical shifts of the alkyl chain with
literature data of related oximes (CSEARCH, [24] ) rather
point to E-configuration of these compounds. This suspi-
cion is confirmed by the fact that oxime 15 and its des-
propylene congener 12, which is unambiguously E-con-
figured as outlined above, exhibit nearly identical chemi-
cal shifts for the carbon atoms of the triazine part (Table
3). A completely parallel trend was also observed for the
homologues 16 and 11 as well as for 15 and 13. Additional-
ly, NOE-difference experiments (irradiation of OH, NOE
on N=C-CH,) also give a hint that oximes 15-17 have the
acyl-chain and the hydroxyl group in the cis-position.

In summary, from our nmr-spectroscopic investigations
it emerged, that oximes 1-7 and 9-17, obtained mainly
from reaction of (3-substituted)-1,2,4-triazines with nitron-
ate anions according to ref [7], were either pure E-isomers
or E/Z-mixtures with very low amounts of Z-isomers.

In Table 3 detailed '*C-nmr data of the investigated ox-
imes are presented, including also a number of *C, 'H
coupling constants. Assignments of chemical shifts are
based on multiplicity selection by the J-modulated spin-
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echo technique [25], on coupling information obtained
from fully 'H-coupled '*C-nmr spectra, on selective hetero-
nuclear decoupling experiments irradiating unambiguous-
ly assigned 'H-nmr lines as well as on comparison with
literature data [1].

EXPERIMENTAL

Melting points were determined on a Biichi melting point ap-
paratus and are uncorrected. The ir spectra were recorded on a
Unicam SP-200 instrument. The nmr spectra were recorded from
deuteriodimethyl sulfoxide solutions on a Bruker AC-80 spec-
trometer (spectrometer frequency for 'H: 80.13 MHz, for “*C:
20.15 MHz) or on a Bruker AM 400 WB instrument (spectrometer
frequency for 'H: 400.14 MHz, for **C: 100.61 MHz). The INEPT
N-nmr spectra of compounds 7 and 8 (in deuteriodimethyl sul-
foxide) were obtained on a Bruker AM 500 instrument, chemical
shifts were related to nitromethane as the reference. NOE-differ-
ence experiments were performed at 30° from non-degassed solu-
tions using the frequency cycling method of Kinns and Sanders
(Bruker NOEMULT) [25]; acquisition parameters: 8 K data
points; spectral width: 1441 Hz; acquisition time: 2.84 s; digital
resolution: 0.35 Hz/data point; pulse width: 3 ps (90°); relaxation
delay 0.5 s; pre-irradiation time: 5 s; irradiation power: 55-59 dB
below 0.2 W; number of scans: 64-400. The 'H-coupled *C-nmr
spectra were obtained with the gated decoupling mode (digital
resolution 0.5 Hz/data point). The 'J(**C, 'H) spin coupling con-
stant of the iminyl N = CH fragment in aldoximes 1-7 was also de-
termined considering the '*C-satellites of the N=CH singlet in
the 'H-nmr spectra of these compounds.

The synthesis of oximes 1, 2, 7, 11, and 13 is described in ref
[7], all other oximes (except Z-14 and E-14 see below) were pre-
pared similarly, details will be published in our forthcoming
paper [9].

(E)143-Methylthio-1,2 4-triazin-5-yl)propanonoxime (E-14).

Compound E-14 was prepared from 3-methylthio-1,2,4-triazine
and nitropropane according to the procedure given in ref [7],
yield 65%, mp 153-154° (ethanol-water).

Anal. Caled. for C,H,(N,0S: C, 42.41; H, 5.08; N, 28.26. Found:
C, 42.51; H, 5.05; N, 28.34.

Reaction of Ethyl 3-Methylthio-1,2,4-triazin-5-yl Ketone with
Hydroxylamine Hydrochloride in Acidic Medium.

Ethyl 3-methylthio-1,2,4-triazin-5-yl ketone [9] (183 mg, 1
mmole) was added to a solution of hydroxylamine hydrochloride
(75 mg, 1.1 mmoles) and sodium acetate trihydrate (150 mg, 1.1
mmoles) in 10 ml of dry ethanol. After stirring at room tempera-
ture for 24 hours, the precipitate was filtered off and recrystal-
lized from ethanol-water to afford 110 mg (60%) of a mixture con-
sisting of oximes E-14 and Z-14 (ratio 4:1 according to 'H-nmr
analysis), mp 147-153°.

Anal. Caled. for C;H,(N,0S: C, 42.41; H, 5.08; N, 28.26. Found:
C, 42.68; H, 5.13; N, 27.94.

Reaction of Ethyl 3-Methylthio-1,2,4-triazin-5-yl Ketone with
Hydroxylamine Hydrochloride in Alkaline Medium.

Ethyl 3-methylthio-1,2,4-triazin-5-yl ketone [9] (183 mg, 1
mmole) was added to a solution of hydroxylamine hydrochloride

(68 mg, 1 mmole) and sodium hydroxide (80 mg, 2 mmoles) in 8
ml of water. After stirring for one hour at room temperature, the
mixture was neutralized with acetic acid. The precipitate was fil-
tered off and recrystallized from ethanol-water to give prisms of
the pure oxime E-14 (150 mg, 75%), mp 153-154°.

Anal. Caled. for C,H,,N,0S: C, 42.41; H, 5.08; N, 28.26. Found:
C, 42.49; H, 5.01; N, 28.16.

- (E)-O-Acetyl-(3-phenyl-1,2,4-triazin-5-yl)methylidenehydroxyl-

amine (E-8).

To a solution of 7 (200 mg, 1 mmole) and pyridine (112 mg, 1.1
mmoles) in 5 ml of benzene, acetic anhydride (87 mg, 1.1 mmoles)
was added at room temperature and the resulting reaction mix-
ture was stirred for one hour. Then the solvent was evaporated in
vacuo and the crude product was purified by column chromatog-
raphy (silica gel, eluent: chloroform) to give 206 mg (85%}) of 8,
mwp 130-131°; 'H-nmr (deuteriochloroform): 6 9.78 (s, 1H, triazine
H-6), 8.59-8.54 (m, 2H, Ph H-2,6), 8.47 (s, 1H, N=CH), 7.60-7.58
(m, 3H, Ph H-3,4,5), 2.32 (s, 3H, CH,); **N-nmr (deuteriodimethyl
sulfoxide): & 42.1 (triazine N-1, 2] = 11.8 Hz), 6.7 (oxime-N, 2] =
1.9 Hz), —9.7 (triazine N-2), —95.1 (triazine N-4, 3] = 3.7 Hz); ir
(potassium bromide): cm™ 1795 (CH;C=0); ms: m/z 242 (M*).

Anal. Caled. for C,H,,N,0,; C, 59.50; H, 4.16; N, 23.13.
Found: C, 59.40; H, 4.13; N, 22.95.
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